Evolving crack patterns in thin films with the extended finite element method

نویسندگان

  • J. Liang
  • R. Huang
  • Z. Suo
چکیده

This paper develops the extended finite element method (XFEM) to evolve patterns of multiple cracks, in a brittle thin film bonded to an elastic substrate, with a relatively coarse mesh, and without remeshing during evolution. A shear lag model describes the deformation in three dimensions with approximate field equations in two-dimensions. The film is susceptible to subcritical cracking, obeying a kinetic law that relates the velocity of each crack to its energy release rate. At a given time, the XFEM solves the field equations and calculates the energy release rate of every crack. For a small time step, each crack is extended in the direction of maximal hoop stress, and by a length set by the kinetic law. To confirm the accuracy of the XFEM, we compare our simulation to the exiting solutions for several simple crack patterns, such as a single crack and a set of parallel cracks. We then simulate the evolution of multiple cracks, initially in a small region of the film but of different lengths, showing curved crack propagation and crack tip shielding. Starting with multiple small cracks throughout the film, the XFEM can generate the well-known mud crack pattern. 2003 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended finite element simulation of crack propagation in cracked Brazilian disc

The cracked Brazilian disc (CBD) specimen is widely used in order to determine mode-I/II and mixed-mode fracture toughness of a rock medium. In this study, the stress intensity factor (SIF) on the crack-tip in this specimen is calculated for various geometrical crack conditions using the extended-finite element method (X-FEM). This method is based upon the finite element method (FEM). In this m...

متن کامل

Simulating energy method for grout-induced crack analysis of rock structures at Chadormalu mine by extended finite element method

Fracture mechanics is a vital component involved in studying the exact behavior of rock materials. Detection and assessment of the behavior of rock joints injected by grout plays an important role in numerical modelling in rock mechanic projects. The importance of mechanisms associated with initiation and propagation of cracks due to hydraulic fracturing has led to a considerable interest in in...

متن کامل

Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation

In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...

متن کامل

Channel-cracking of thin films with the extended finite element method

The recently developed extended finite element method (XFEM) is applied to compute the steady-state energy release rate of channeling cracks in thin films. The method is demonstrated to be able to model arbitrary singularities by using appropriate enriching functions at selected nodes with a relatively coarse mesh. The dimensionless driving force for channeling cracks is obtained as a function ...

متن کامل

Extended Finite Element Method for Statics and Vibration Analyses on Cracked Bars and Beams

In this paper, the extended finite element method (XFEM) is employed to investigate the statics and vibration problems of cracked isotropic bars and beams. Three kinds of elements namely the standard, the blended and the enriched elements are utilized to discretize the structure and model cracks. Two techniques referred as the increase of the number of Gauss integration points and the rectangle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003